Kakeya sets of curves

نویسنده

  • Laura Wisewell
چکیده

In this paper we investigate an analogue for curves of the famous Kakeya conjecture about straight lines. The simplest version of the latter asks whether a set in R that includes a unit line segment in every direction must necessarily have dimension n. The analogue we have in mind replaces the line segments by curved arcs from a specified family. (This is a quite different problem from that considered by Minicozzi and Sogge [18] who looked at geodesics in curved space.) The families of curves we are interested in arise from Hörmander’s conjecture in harmonic analysis, which deals with oscillatory integral operators of the form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Kakeya problem: a gap in the spectrum and classification of the smallest examples

Kakeya sets in the affine plane AG(2, q) are point sets that are the union of lines, one through every point on the line at infinity. The finite field Kakeya problem asks for the size of the smallest Kakeya sets and the classification of these Kakeya sets. In this article we present a new example of a small Kakeya set and we give the classification of the smallest Kakeya sets up to weight q(q+2...

متن کامل

The Kakeya Set and Maximal Conjectures for Algebraic Varieties over Finite Fields

Using the polynomial method of Dvir [5], we establish optimal estimates for Kakeya sets and Kakeya maximal functions associated to algebraic varieties W over finite fields F . For instance, given an n−1-dimensional projective variety W ⊂ P(F ), we establish the Kakeya maximal estimate ‖ sup γ∋w ∑ v∈γ(F ) |f(v)|‖ln(W ) ≤ Cn,W,d|F | ‖f‖ln(Fn) for all functions f : F → R and d ≥ 1, where for each ...

متن کامل

On the Size of Kakeya Sets in Finite Vector Spaces

For a finite field Fq, a Kakeya set K is a subset of Fq that contains a line in every direction. This paper derives new upper bounds on the minimum size of Kakeya sets when q is even.

متن کامل

Kakeya-Type Sets in Local Fields with Finite Residue Field

We present a construction of a measure-zero Kakeya-type set in a finite-dimensional space K over a local field with finite residue field. The construction is an adaptation of the ideas appearing in [12] and [13]. The existence of measure-zero Kakeya-type sets over discrete valuation rings is also discussed, giving an alternative construction to the one presented in [4] over Fq[[t]].

متن کامل

Kakeya Sets and Directional Maximal Operators in the Plane

We completely characterize the boundedness of planar directional maximal operators on L. More precisely, if Ω is a set of directions, we show that MΩ, the maximal operator associated to line segments in the directions Ω, is unbounded on L, for all p < ∞, precisely when Ω admits Kakeya-type sets. In fact, we show that if Ω does not admit Kakeya sets, then Ω is a generalized lacunary set, and hen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008